Reminders 10-29-07:
-Next Homework Due 11/1!!!
-Circular Motion Questions due Wednesday 10/31.
-Bring Chapter 9 Notes to Lab this week.
-Chapter 7 Conceptual Quiz Next Monday.
-Students need a 50% average in lab to pass this
course. Presently there are 5 people with a lab.
average under 50%. If those averages remain under 50% at the end of the semester the course grade is. automatically F!!!

Objectives:
-Centripetal Force Examples
-Gravitation and Satellites

- A small mass is sliding without friction along a looped apparatus The loop has a radius r. The mass always remains on the loop.

To find minimum height h so that it makes it around loop we need:

1. free body diagram at top of loop
2. speed at top of loop
3. to realize that the normal force of loop goes to zero at top of loop when object loses contact with loop.

Forces
$-\mathrm{N}-\mathrm{mg}=-\mathrm{mv}{ }^{2} / \mathrm{r}$
$\mathrm{N}=\left(\mathrm{mv}^{2} / \mathrm{r}\right)-\mathrm{mg}$: it can barely make it around loop if N slightly
greater than zero. If $\mathrm{N}=0$, then $\mathrm{mg}=\left(\mathrm{mv}^{2} / \mathrm{r}\right)$ and $v_{\text {top }}=\sqrt{\mathrm{gR}}$
Energy Conservation:
$\mathrm{mgh}=0.5 \mathrm{mv}^{2}+\mathrm{mg} 2 \mathrm{R}$
$\mathrm{mgh}=0.5 \mathrm{mgR}+\mathrm{mg} 2 \mathrm{R}$
$\mathrm{mgh}=2.5 \mathrm{mgR}$
$\mathrm{h}=2.5 \mathrm{R}$

Example

- Loop Problem
- Calculate the minimum release height h so that it goes around the loop.
- If the actual release height is 2 h , what is the normal force at the bottom of the loop? Top of the loop?After it leaves the loop?
- Ans:2.5r; 11 mg 5mg mg

If initial height is $2 \mathrm{~h}=5 \mathrm{R}$, we need to find speed at bottom of loop to find N at bottom.
Conserve Energy:
$\mathrm{mg} 5 \mathrm{R}=0.5 \mathrm{mv}^{2}$
$\mathrm{v}^{2}=10 \mathrm{gR}$

$\mathrm{N}-\mathrm{mg}=\mathrm{mv}{ }^{2} / \mathrm{R}$
$\mathrm{N}=\mathrm{mv}^{2} / \mathrm{R}+\mathrm{mg}=\mathrm{m}(10 \mathrm{gR}) / \mathrm{R}+\mathrm{mg}=11 \mathrm{mg}$ at bottom
Find N at top when initial height is 5 R .
At the top $\mathrm{N}=\mathrm{mv}^{2} / \mathrm{R}-\mathrm{mg}$ (see previous slide)
Now conserve energy to find speed at top.
$\mathrm{mg} 5 \mathrm{R}=0.5 \mathrm{mv}^{2}+\mathrm{mg} 2 \mathrm{R}$
$\mathrm{mg} 3 \mathrm{R}=0.5 \mathrm{mv}^{2}$
$\mathrm{v}^{2}=6 \mathrm{gR}$
so
$\mathrm{N}=\mathrm{m}(6 \mathrm{gR}) / \mathrm{R}-\mathrm{mg}=5 \mathrm{mg}$

When it leaves the loop then $\mathrm{N}=\mathrm{mg}$, since $\mathrm{a}_{\mathrm{c}}=0$.

A pendulum of mass m and length 1 m is released from rest at an angle of 60°. What is the tension in the string at the bottom of the arc? What happens to the tension as the angle decreases?

Summing forces at bottom of swing yields
$\mathrm{T}-\mathrm{mg}=\mathrm{mv}^{2} / \mathrm{L}$.
We need v. Conserve energy.
$\operatorname{mgL}(1-\cos 60)=0.5 \mathrm{mv}^{2}$
$v^{2}=2 g L(1-\cos 60)=g L$
$\mathrm{T}=\mathrm{mg}+\mathrm{mgL} / \mathrm{L}=2 \mathrm{mg}$
What if the final angle is not 0 degrees?

- The Earth revolves around the Sun in a circular orbit (approximately). If the mass of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$ and the distance from the Earth to the Sun is 1.5×10^{11} meters, calculate the period of the Earth's orbit around the Sun. Remember,

$$
\begin{aligned}
& \frac{G M_{s} M_{e}}{r_{\text {es }}^{2}}=\frac{M_{e} v^{2}}{r_{e s}} \\
& v=\frac{2 \pi r_{\text {res }}}{T} \\
& ; \text { days }
\end{aligned}
$$

Ans: 3.17×10^{7} s: 365 days

$$
\begin{aligned}
& \frac{G M_{S} M_{E}}{r_{e s}^{2}}=\frac{M_{E} v^{2}}{r_{e s}} \Rightarrow \frac{G M_{S}}{r_{e s}^{2}}=\frac{v^{2}}{r_{e s}}=\left(\frac{2 \pi r_{e s}}{T}\right)^{2} \frac{1}{r_{e s}} \\
& \frac{G M_{S}}{r_{e s}^{2}}=\frac{4 \pi^{2} r_{e s}}{T^{2}} \\
& \frac{T^{2}}{r_{e s}^{3}}=\frac{4 \pi^{2}}{G M_{S}}=\text { cons } \tan t \Rightarrow T^{2}=\frac{4 \pi^{2}}{G M_{S}} r_{e s}^{3} \\
& T=\sqrt{\frac{4 \pi^{2}}{G M_{S}} r_{e s}^{3}=365 \text { days }}
\end{aligned}
$$

- If the orbital radius of a satellite is decreased by a factor of four what happens
- to its speed?
- to its orbital period?
- Does work have to be done to the satellite to accomplish this feat?

