Reminders 10-24-07:

- -Exam 2 Average 61%
- -Next Homework Due 11/1!!!
- -Circular Motion Questions due Wednesday 10/31.
- -Physics 2Y is T 2:15-3:20 next semester. Is this problematic?
- Students need a 50% average in lab to pass this course. Presently there are 6 people with a lab average under 50%. If those averages remain under 50% at the end of the semester the course grade is

automatically F!!!

Objectives:

- -Centripetal Acceleration
- -Centripetal Force
- -Examples

Centropetal force

force (s) causing an

object to go in a

circular path.

Do not include my

in FBD.

Effect

Course.

 An 0.12 kg object attached to a string is whirled in a horizontal circle whose radius is 0.75m. The velocity of the object is 3.0m/s. What is the centripetal acceleration and the centripetal force acting on the object? What is the tension in the string?

$$F = 0.75 \text{ m} \qquad N = 3.0 \frac{\text{m}}{\text{S}}$$

$$O_{c} = \frac{V^{2}}{r} = \frac{(3.0 \frac{\text{m}}{\text{S}})}{0.75 \text{ m}}$$

$$= 12 \frac{\text{m}}{\text{s}^{2}}$$

$$= 1.4 \text{ N}$$

$$T = 1.4 \text{ N}$$

Lecture 10-24-07 October 26, 2007

> An automobile is rounding a turn of constant radius of curvature. A passenger notices that the arm rest is pushing toward the center of the turn with a constant force. The passenger has a mass of 78 kg. The force of the armrest on him is 150 N. The forward speed of the automobile is 21 m/s.

- What is the acceleration of the car?
- What is the radius of the turn?
- What is the frictional force acting on the car?

$$m = 78 \text{ Kg}$$

$$n = 21 \text{ m/s}$$

$$T = 150 \text{ N} = \text{mg}$$

$$= 150 \text{ N} = 1.9 \text{ mg}$$

$$= 1.9 \text{ mg}$$

$$T = 1.9$$

Lecture 10-24-07 October 26, 2007

Consider the following scenerio.

The masses are moving in a circular path.

Which string is most likely to break first?

$$T_{2} = \frac{m_{2}v_{2}}{r_{1}} \qquad T_{2} = \frac{m_{1}v_{1}}{r_{1}}$$

$$T_{1} - \frac{m_{2}v_{2}}{r_{1}} = \frac{m_{1}v_{1}}{r_{1}}$$

$$T_{1} = \frac{m_{1}v_{1}^{2}}{r_{1}} + \frac{m_{2}v_{2}^{2}}{r_{2}}$$

$$T_{1} = \frac{m_{1}v_{1}^{2}}{r_{1}} + \frac{m_{2}v_{2}^{2}}{r_{2}}$$

Lecture 10-24-07 October 26, 2007

 A pendulum of mass 2.00kg and length 1.00m swings in a horizontal circle with a constant speed v. If θ=30° calculate v and the the tension in the string.

Oct 24-10:38 AM