Reminders 9-05-07:
-Webassign Homework Due 9/6!!!
-Use the FORUM on Webassign for help from classmates.
-Log onto Computers in lab!!!
-Please do not save files on our server.
-Save all files onto a USB Stick/Flash Drive.
-Obtain lab software from desktop of computers in lab.
-Check course web page once a week.
-All lab reports require a cover sheet \& are worth 20 points.
-All lab reports to be turned in at beginning of lab meeting.
-Log in \& Log out when using Tutoring Center or S-107 (lab)
-Read Appendix A, 3.1\&3.2 (vectors), 4.1\&4.2 (forces)
-Sign up for Physics 2X.
-Conceptual Quiz Wednesday $9 / 12$ on 3.1\&3.2, 4.1\&4.2.
-Exam 1 Monday 9/24.
Objectives:
-More on Forces \& Vectors
-Statics

Example:
A vector is 60.0 units long and directed along the negative x-axis. A second vector is 80.0 units long and directed along the y-axis. Determine the magnitude and direction of the resultant vector.

A vector is 60.0 units long and directed 30.0 degrees above the x-axis. A second vector is 80.0 units long and directed 45 degrees below the x-axis. Determine the magnitude and direction of the resultant vector.

x		$60.0 \cos 0^{\circ}=52.0$
B	$80 \cos 45^{\circ}=56.5$	$-80 \sin 45^{\circ}=50.56 .5$
R	108.5	-26.5

$$
\begin{array}{r}
R=\sqrt{(108.5)^{2}+(-26.5)^{2}}=112 \\
\theta=\tan ^{-1}-265=-13.2^{\circ} 108.5
\end{array}
$$

13.7° below $t x$-axis
$13.7^{\circ} \mathrm{S}$ of $E \quad 346.3^{\circ}$. $+x$-axis

Let's add the following three vectors. Sketch the vectors. Vector A: $30.0 \mathrm{~m} / \mathrm{s}$ at 36.9° West of South Vector B: $60.0 \mathrm{~m} / \mathrm{s}$ at 66.4° North of West Vector C: $90.0 \mathrm{~m} / \mathrm{s}$ at 45.5° East of North

2nd step: find the y-component of A : \qquad
find the y-component of B : \qquad
find the y-component of C : \qquad
$3^{\text {nd }}$ step:
Sum the x-components: \qquad

Sum the y-components: \qquad
$4^{\text {th }}$ step: Use Pythagorean Theorem to find magnitude of resultant
Magnitude; \qquad
5 [h step: Calculate direction of resultant vector using $\arctan \left(\boldsymbol{R}_{y} / \boldsymbol{R}_{x}\right)$
Angle; \qquad
Suppose
$R_{x}=-30$
$R_{y}=60$
$\theta=\tan ^{-1} \frac{60}{-30}$

force of lost rope

$$
\begin{aligned}
& \sum F_{x}=-T_{1} \cos \theta_{1}+T_{2} \cos \theta_{2}=0 \\
& \sum F_{y}=T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2}-T_{3}=0
\end{aligned}
$$

What if the angles in the figure are different?

$$
\begin{gathered}
\Sigma F_{x}=T_{1} \cos \theta_{1}-T_{2} \cos \theta_{2}=0 \\
\Sigma F_{y}=T_{1} \sin \theta_{1}+T_{2} \sin \theta_{2}-W=0 \\
\text { let } \theta_{1}=60.0 \text { and } \theta_{2}=30.0^{\circ} \\
\text { and let } \mathrm{m}=16.0 \mathrm{~kg}
\end{gathered}
$$

$$
T_{1}=T_{2} \frac{\cos \theta_{2}}{\cos \theta_{1}}
$$

$$
\begin{gathered}
T_{2}\left(\frac{\cos \theta_{2}}{\cos \theta_{1}}\right) \sin \theta_{1}+T_{2} \sin \theta_{2}-W=0 \\
T_{2}\left[\cos \theta_{2}+\tan \theta_{1}+\sin \theta_{2}\right]-W=0 \\
T_{2}\left[\cos \theta_{2} \tan \theta_{1}+\sin \theta_{2}\right]=W
\end{gathered}
$$

$\mathrm{T}_{2}=\mathrm{W} /\left[\cos \theta_{2} \tan \theta_{1}+\sin \theta_{2}\right]$
$\mathrm{T}_{2}=(16.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) /\left[\cos 30^{\circ} \tan 60^{\circ}+\sin 30^{\circ}\right]$
$\mathrm{T}_{2}=78.4 \mathrm{~N}$

