Reminders 9-05-07:

-Webassign Homework Due 9/6!!!

- -Use the FORUM on Webassign for help from classmates.
- -Log onto Computers in lab!!!
- -Please do not save files on our server.
- -Save all files onto a USB Stick/Flash Drive.
- -Obtain lab software from desktop of computers in lab.
- -Check course web page once a week.
- -All lab reports require a cover sheet & are worth 20 points.
- -All lab reports to be turned in at beginning of lab meeting.
- -Log in & Log out when using Tutoring Center or S-107 (lab)
- -Read Appendix A, 3.1&3.2 (vectors), 4.1&4.2 (forces)
- -Sign up for Physics 2X.
- -Conceptual **Quiz** Wednesday 9/12 on 3.1&3.2, 4.1&4.2.
- -Exam 1 Monday 9/24.

Objectives:

- -More on Forces & Vectors
- -Statics

Example:

A vector is 60.0 units long and directed along the negative x-axis. A second vector is 80.0 units long and directed along the y-axis. Determine the magnitude and direction of the resultant vector.

A vector is 60.0 units long and directed 30.0 degrees above the x-axis. A second vector is 80.0 units long and directed 45 degrees below the x-axis. Determine the magnitude and direction of the resultant vector.

Untitled

Ve Ve	ving three vectors. Sketch the vectors. ctor A: 30.0m/s at 36.9° West of South ctor B: 60.0m/s at 66.4° North of West ctor C: 90.0m/s at 45.5° East of North	66.40		45.57	**************************************
		C	3690		E
1st step;	find the x-component of A: 30.0 Sin 36.9 find the x-component of B: 60.0 cos 66.4 find the x-component of C: 90.0 Sin 45.5	2) <u>m</u>		\$	
	find the x-component of B:	र उ			
	find the x-component of C. 90.0 5 th 45.5) %			
2nd step: f	ind the y-component of A:	_			
	find the y-component of B:				
	find the y-component of C:				
3 rd step:	Sum the x-components:				
	Sum the y-components:	_			
<u>4^{ւր} step</u> : U։	se Pythagorean <u>Theorem</u> to find magnitude of resultant				
	Magnitude:				
<u>5th step</u> : C	alculate direction of resultant vector using $rctan egin{pmatrix} R_y \\ R_x \end{pmatrix}$				
	Angle;				

Suggere Rx = 30 A= fan - 30 Ry = 60 A= fan - 30

What if the angles in the figure are different?

$$\Sigma F_x = T_1 \cos \theta_1 - T_2 \cos \theta_2 = 0$$

$$\Sigma F_y = T_1 \sin \theta_1 + T_2 \sin \theta_2 - W = 0$$

let $\theta_1 = 60.0$ and $\theta_2 = 30.0^\circ$ and let m = 16.0 kg

$$T_{1} = T_{2} \cos \theta_{2}$$

$$T_{2} \left(\frac{\cos \theta_{2}}{\cos \theta_{2}}\right) \sin \theta_{1} + T_{2} \sin \theta_{2} - W = 0$$

$$T_{2} \left(\frac{\cos \theta_{2}}{\cos \theta_{2}}\right) \sin \theta_{1} + \sin \theta_{2} - W = 0$$

$$T_{2} \left(\frac{\cos \theta_{2}}{\cos \theta_{2}}\right) \sin \theta_{1} + \sin \theta_{2} = 0$$

 $T_2 = W/[\cos\theta_2 \tan\theta_1 + \sin\theta_2]$ $T_2 = (16.0 \text{kg})(9.80 \text{m/s}^2)/[\cos 30^\circ \tan 60^\circ + \sin 30^\circ]$ $T_2 = 78.4 \text{N}$