Reminders 10-13-10:
 -Exam 2 Ch 4-6 Mon. Oct. 18

Objectives:
-Conservation of Momentum
Examples

- A big 4.0 kg fish moving to the left at $3.0 \mathrm{~m} / \mathrm{s}$ swallows a small 1.0 kg fish moving to the left at $2.0 \mathrm{~m} / \mathrm{s}$. What is the final speed of the big fish? What if the fish were moving in the opposite direction?

$$
4 \mathrm{Ks}^{2}
$$

$$
\begin{aligned}
& 2.0 \mathrm{Ks} \\
& \text { is } \\
& \text { Small fish } \\
& \leftarrow 2.0 \mathrm{~m} / \mathrm{s} \\
& +\underset{x}{ } \\
& \beta_{1 y} \text { fish } \\
& \sum p_{i}=\sum p_{f} \\
& \left(4.0 \mathrm{R}_{5}\right)(3.0 \mathrm{mls})+\left(1.0 \mathrm{k}_{5}\right)(2.0 \mathrm{mb})=5 \mathrm{~V}_{f} \\
& 14 \mathrm{kgm}_{\mathrm{m}} \text { = } 5 \mathrm{v}_{f} \\
& v_{f}=\frac{14}{5} \mathrm{~m} / \mathrm{s}=2.8 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
& 13 \\
& 1 \mathrm{ks} \\
& 2 \mathrm{mls}
\end{aligned}
$$

$$
\begin{aligned}
+x(4)(3)+(1)(-2) & =5 v_{f} \\
10 \mathrm{ksm} / \mathrm{s} & =5 \mathrm{v}_{\mathrm{f}} \\
v_{f} & =2.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A gun with a muzzle velocity of $4.0 \times 10^{2} \mathrm{~m} / \mathrm{s}$ horizontally fires a 12 g bullet into a 2.0 kg block resting on a frictionless surface. The bullet comes to rest after traveling 15 cm .

- What are the impulse and change in momentum of each object just after the collision?
- What is the work done on the bullet by the block in bringing it to a complete stop?
- What is the force and average power required to stop the bullet?
- What is the average acceleration of the bullet?
- What is the work done on the block in this time.

$$
\begin{gathered}
\begin{array}{c}
\underset{D}{D=400 \mathrm{~m} / \mathrm{s}}, ~ \\
v_{f}|D| \text { After }
\end{array} \quad \text { Before } \\
\sum p_{i}=\sum_{P_{f}} \quad+x \\
(.012 \mathrm{ks})(400)=\left(m_{b}+m_{B}\right) v_{f} \\
v_{f}=\frac{(.012)(400)}{2.0+.012}=2.39 \frac{\mathrm{~m}}{\mathrm{~s}} \\
F \Delta t=m_{B} \Delta V=(2.0 \mathrm{ks})(2.39-0)
\end{gathered}
$$

Impala delivers $=4.8 \mathrm{Ks} \mathrm{m}_{\mathrm{s}} / \mathrm{s}$ to block by bullet

Impulse delmenes to bullet by block

$$
\begin{aligned}
& =\text { bullet by block } \\
& =(.01212)(2.39-400)=-4.8 \frac{k^{k n}}{\mathrm{~s}}
\end{aligned}
$$

Title: Oct 8-3:53 PM (4 of 8)

$$
\begin{aligned}
& W_{\text {net }}=\Delta K E \\
& =\frac{1}{2}(.012)\left[(2.35)^{2}-(400)^{2}\right] \\
& \text { - } F d=-960 J \sigma \\
& F=\frac{960 \mathrm{~J}}{0.15 \mathrm{~m}}=6400^{\circ} \mathrm{N} \\
& P_{\text {aus }}=\frac{w}{t}=F V_{\text {avs }}=(6400 N)\left[\frac{2.99+40}{2}\right] \\
& =1.3 \times 10^{6} \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
& F=m a \quad a=\frac{f}{m} \\
& a=\frac{6400 \mathrm{~N}}{.012 \mathrm{~kg}}=5.3 \times 10^{5} \frac{\mathrm{~m}}{5^{2}} \\
& \begin{aligned}
W_{b l_{o c k}} & =\frac{1}{2} m v_{4}^{2}-\frac{1}{2} m v_{2}^{2} \\
& =\frac{1}{2}(2.012 \mathrm{z})(2.39)^{2} \\
& =5.2 \mathrm{~J}
\end{aligned}
\end{aligned}
$$

$$
V<
$$

$$
=
$$

$$
\begin{aligned}
& m_{b} v_{b}=\left(m_{b}+M_{3}\right) V \leqslant \\
& \triangle C E+\triangle P E=0 \\
& \frac{1}{2}\left(m_{m}+M_{a}\right)^{2} V_{k}^{2}-\frac{1}{2}\left(m_{b}+M_{b}\right) V^{2}+\left(m_{b}+M_{b}\right)^{\circ} \\
& -\frac{1}{2}\left(m_{s}+M_{b}\right) V^{2}+\left(\text { mp }_{5}+M_{B}\right) g \Delta y=0 \\
& -\frac{1}{2} v^{2}+g s y=0 \\
& V^{2}=2 g \Delta y \\
& V=\sqrt{23 \Delta y} \\
& m_{b} v_{b}=\left(m_{b}+M_{B}\right) V \\
& m_{b} v_{b}=\left(m_{b}+M_{B}\right) \sqrt{2_{y} \Delta 4} \\
& V_{b}=\frac{\left(m_{b}+M_{B}\right) \sqrt{2_{y} \Delta y}}{m_{b}}
\end{aligned}
$$

