## Reminders 10-11-10:

-Turn in "Momentum" Worksheet Wednesday
-Exam 2 Ch 4-6 Mon. Oct. 18
-No QUIZ THIS WEEK

Objectives:
-Impulse
-Impulse Momentum Theorem
-Conservation of Momentum
fst=msu Example

- Why do airbags help to protect us from serious injury in a collision?

$$
\text { Inneares } \Delta t
$$

- Suppose you jump from a height of 3.0 m . Why is it advisable to land with your legs bent instead of stiff-legged?


Is In both caves
Example is same Example
f $\Delta t$ is same became $V_{4}=0 \quad V_{2}=V$

- Which will cause more damage $\Delta p=m v$
- driving your car into a brick wall or
- driving your car into an oncoming vehicle that has the same mass and speed but is moving in the opposite direction?

Hint: What is $\mathrm{F} \Delta \mathrm{t}$ in both cases?

```
O- PowerPoint (71)
0日
```

－A mischievous child drops a 1 kg flowe the head of a person 10 m below．What momentum of the pot upon impact？

$$
\begin{aligned}
& P=m V \\
& a_{y}=-9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& v_{2}=0 \Delta y^{2}=-10 \mathrm{~m} \text { 分 } \\
& V_{f}^{2}=V_{i}^{2}+2 a s y \\
& v_{f}=\sqrt{2 a s y}=\sqrt{2(-9.8)(-10)} \\
& =-14 \mathrm{~m} / \mathrm{s} \\
& \vec{p}=(1 \mathrm{~kg})(-14 \mathrm{~m} / \mathrm{s})=-14 \mathrm{~kg} \mathrm{~m} / \mathrm{s} \\
& \text { の } 14 \mathrm{kgm} / \mathrm{s} \text { down }
\end{aligned}
$$


$F_{y}=0$ because $\Delta p_{y}=0$ speed dues nit Change in $y$-dir.

$$
\begin{aligned}
& f_{x}=\frac{\Delta p_{x}}{\Delta t}=\frac{m v_{x_{f}}-m v_{x i}}{\Delta t} \\
& =\frac{m\left(v_{x_{f}}-v_{x i}\right)}{\Delta t} \\
& =\frac{3 k_{s}(-10 \cos 30-10 \cos 30) \frac{n}{s}}{0.2 s} \\
& =-260 \mathrm{~N}=\text { one, of wall } \\
& \text { on ball in x-dir }
\end{aligned}
$$

Force of ball on wall is 260 N in ty-direction due to Newton's Ord law.

Shown below are eight cars that are moving along horizontal roads at specified spe nasses of the cars. All of the cars are the same size and shape, but they are carryi nasses. All of these cars are going to be stopped by plowing into identical barri going to be stopped by the same constant force py the barrier.

Rank these situations from greatest to least on the basis of the stopping time that he cars with the same force. That is, put first the car that requires the longest ti hat requires the shortest time to stop the car with the same force.

-ongest 1 $\qquad$ 2 $\qquad$ 3 $\qquad$ $4 \ldots 5$ $\qquad$ 6 $\qquad$ 7 $\qquad$ 8 $\qquad$ Shortes ○ ○ ○ PowerPoint (76) Or, all cars require the same time. $\qquad$ $-$

[^0]\[

$$
\begin{aligned}
& m_{\mathrm{g}} \overline{\bar{a}}_{\mathrm{g}}=-\mathrm{m}_{\mathrm{o}} \overline{\bar{a}}_{\mathrm{o}} \\
& m_{g} \frac{\Delta \bar{v}_{g}}{\Delta t}=-m_{0} \frac{\Delta \bar{v}_{0}}{\Delta t} \\
& m_{\mathrm{g}}\left(\overline{\mathrm{~V}}_{\mathrm{fg}}-\overline{\mathrm{V}}_{\mathrm{ig}}\right)=-\mathrm{m}_{\mathrm{o}}\left(\overline{\mathrm{~V}}_{\mathrm{fo}}-\overline{\mathrm{V}}_{\mathrm{io}}\right)
\end{aligned}
$$
\]

inear momentum is conserved in a collision 19 lomg as no external forces are present.

$$
\begin{aligned}
& m_{\mathrm{g}} \overline{\mathrm{a}}_{\mathrm{g}}=-\mathrm{m}_{0} \overline{\mathrm{a}}_{\mathrm{o}} \\
& m_{\mathrm{g}} \frac{\Delta \overline{\mathbf{v}}_{\mathrm{g}}}{\Delta \mathrm{t}}=-\mathrm{m}_{\mathrm{o}} \frac{\Delta \overline{\mathbf{v}}_{\mathrm{o}}}{\Delta \mathrm{t}} \\
& m_{\mathrm{g}}\left(\overline{\mathrm{v}}_{\mathrm{fg}_{\mathrm{g}}}-\overline{\mathbf{v}}_{\mathrm{ig}_{\mathrm{g}}}\right)=-\mathbf{m}_{\mathrm{o}}\left(\overline{\mathbf{v}}_{\mathrm{ffo}}-\overline{\mathbf{v}}_{\mathrm{io}_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma \mathrm{p}_{\mathrm{i}}=\Sigma \mathrm{p}_{\mathrm{f}} ; \text { a constant! }
\end{aligned}
$$

linear momentum is conserved in a collision造进g as no external forces are present.

- A 2.0 kg gun fires a 5.0 g bullet. The bullet has a velocity of $6.0 \times 10^{2} \mathrm{~m} / \mathrm{s}$. Find the recoil velocity of the gun. Note that the momentum of the bullet is equal to the momentum of the gun. Why does the bullet cause more damage than the gun?


$$
v_{c}=0
$$

$$
\begin{aligned}
& \sum \vec{P}_{i}=\sum \vec{p}_{f} \\
& 0=M_{G} V_{f_{6}}+m V_{f_{B}}
\end{aligned}
$$

$$
M_{G} v_{f_{B}}=-m v_{f_{B}}
$$

$$
V_{f_{G}}=\frac{-m v_{f_{B}}}{M_{G}}
$$

$$
=\frac{(.005 \mathrm{ks})\left(600 \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{2.0 . \mathrm{kg}}
$$

$$
=1.5 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \Delta K E_{G}=\frac{1}{2}(2.0)(1.5 \mathrm{~m} / \mathrm{s})^{2}=2 \mathrm{~J} \\
& \Delta K E_{B}=\frac{1}{2}(.005)(600)^{2}=900 \delta \\
& W=F d
\end{aligned}
$$

Bullet requires more walk to stop it. So it causes more dumpy


[^0]:    ...... carerlil. explain your reasoning.

