Reminders 08-05-09:

- Exam 4 Today
- Read Chapters 20 and 21
- Answers to Standardized Test p. 561 1D, 2C,

3A, 4D, 5A, 6C, 7D, 8B, 9B

Objectives:

- Coulomb's Law
- Electric Fields
- Ohm's Law
- Exam 4
 tonce

$$
\begin{aligned}
& \text { torce } \\
& W_{g}=(980 \mathrm{~N})(10 \mathrm{~m}) \cos 90=0 \\
& W_{\mathrm{N}}=(\mathrm{N})(10 \mathrm{~m}) \cos 90=\underline{0} \\
& W_{86.7 \mathrm{~N}}=(86.7 \mathrm{~N})(10 \mathrm{~m}) \cos 30=750 \mathrm{~J} \\
& 0 \mathrm{or} \\
&\left.\left(f_{x}\right)(10 \mathrm{~m}) \cos 0=75 \mathrm{~N}\right)(100 \mathrm{~J} \\
& W_{\text {100N }}=(100 \mathrm{~N})(10 \mathrm{~m}) \cos 120=-500 \mathrm{~J} \\
&\left(\left(f_{x_{100 \mathrm{~N}}}\right)(10 \mathrm{~mm}) \cos 180\right. \\
&(50 \mathrm{~N})(10 \mathrm{~m})(\mathrm{H})=-500 \mathrm{~J}
\end{aligned}
$$

Work - Enesgy

$$
N_{\text {net }}=\Delta K E
$$

Add woik done by all fones

$$
\begin{aligned}
& W_{86.7 \mathrm{~N}}+W_{100 \mathrm{~N}}=750 \mathrm{Nm}^{+}-500 \mathrm{Nm} \\
& -250 N=\frac{1}{2} m\left(v_{2}^{2}-v_{2}^{2}\right)
\end{aligned}
$$

A 08-06-09

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2} \\
& \frac{v^{2}}{}=\left(v_{x}^{2}+v_{y}^{2}\right) \\
& \text { magnitude fele vecity } \\
& \text { vector } \\
& \text { vect }
\end{aligned}=T E_{f}
$$

Two charges, q_{A} and q_{B}, are at rest near a positive test charge, q_{T}, of $7.2 \mu \mathrm{C}$. The first charge, q_{A}, is a positive charge of $3.6 \mu \mathrm{C}$, located 3.5 cm away from q_{T} at $35^{\circ} ; \mathrm{q}_{\mathrm{B}}$ is a negative charge of $-8.9 \mu \mathrm{C}$, located 6.8 cm away at 130°.
$\underset{\text { force caused by } q \mathrm{~A}}{\text { (a) }}$ Determine the magnitude of each of the forces acting on q_{T}.
190 N
force caused by qB
125 N
(b) Sketch a force diagram. (Do this on paper. Your instructor may ask you to turn in this work.)

The two pith balls below each have a mass of 2.5 g and equal charge. One pith ball is suspended by an insulating thread. The other is brought to $x=4.0 \mathrm{~cm}$ from the suspended ball. The suspended ball is now hanging with the thread forming an angle of 30.0° with the vertical. The ball is in equilibrium with $\mathrm{F}_{\mathrm{E}}, \mathrm{F}_{\mathrm{g}}$, and F_{T}. Calculate each of the following.

