Reminders 07-14-09:

- Turn in Problems 59 and 60 Chapter 2 Wed.
- 3rd Webassign due Wed. 11:59PM
- Exam 1 Chapters 1-3 Wednesday July 15.
- Print Out Sample Exams From Our Website (focus on problems 1-4 Exam 1 F01; problems 1,3,&4 Exam 2 F01; problem 1-6 Exam 1 S00; problems 1,3, & 4 Exam 2 S00.
- Answers to Standardized Test p.85 C,B,A,A,C,C,D,B,D; 14.4m/s²

Objectives:

- Vectors Addition
- Forces
- Newton's Laws

76 90.0 km/h (need to convert tom/s ND 2.2 brake applied 40.0m 40.0m-18.8m=21.2m 40.0m dreaction = (90 km) (1000m) = 18.75m = 18,8m Car must go from 25.0m zero in 21.2m with acc. -10.0 m/s². How fast will can be traveling in 21.2m? $V_{f} = \sqrt{(25.0\frac{m}{5})^{2} + 2(-10.0\frac{m}{5})(21.2m)}$ = [4.]m/s. This means that can hits barrier. It is ubove maximum speed required to avoid to avoid barrier. Can must travel ΔX = 40.0m = V. (.755) + SK 15× slowing = 40.0m-V; (.755) where 0.7555 reaction time

diotance travelul while slowing down

3

 A vector is 60.0 units long and directed 30.0 degrees above the x-axis. A second vector is 80.0 units long and directed 45.0 degrees below the x-axis. Determine the magnitude and direction of the resultant vector.

Make sure you define your scale. Indicate length and angle g A DEF. Resultant. A J30° $A_x = 60.0 \cos 30.0^\circ = 52.0$ $A_y = 60.0 \sin 30.0 = 30.0$ 010 --- 45° = 56.6 units

$$B_{x} = 80.0 \cos 45 - 56.6 \text{ m/s}$$

$$B_{y} = 70.0 \sin 45^{\circ} = -56.6 \text{ m/s}$$

$$A = 52.0 = 30.0$$

$$B = 56.6 = -56.6$$

$$R = \sqrt{R^{2} + R^{2}}$$

$$= \sqrt{(108.6)^{2} + (266)^{2}}$$

= 11.0 units

$$\theta = \tan \frac{-1}{108.6} = -13.5^{\circ}$$

(3.5° below
X-axis

Let's add the following three vectors. Sketch the vectors. Vector A: 30.0m/s at 36.9^o West of South Vector B: 60.0m/s at 66.4^o North of West Vector C: 90.0m/s at 45.5^o East of North

<u>1st step</u>	2: find the x-component of A:
	find the x-component of B:
find	the x-component of C:
2nd ste	p: find the y-component of A:
	find the y-component of B:
find	the y-component of C:
<u>3rds</u>	t <u>ep</u> : Sum the x-components:
	Sum the y-components:
<u>4ths</u> resultar	<u>tep</u> : Use Pythagorean Theorem to find magnitude of nt
Magnitu	ıde:
 <u>5th_s</u>	tep: Calculate direction of resultant vector using
Anale:	

The length of vector **A** is 250 units and the length of vector **B** is 350 units. If these two vectors are added together, what is the maximum possible length of their sum? Please illustrate your response with a drawing.

What is the minimum possible length of their sum? Please illustrate your response with a drawing.