Reminders 07-14-09:

- Turn in Problems 59 and 60 Chapter 2 Wed.
- 3rd Webassign due Wed. 11:59PM
- Exam 1 Chapters 1-3 Wednesday July 15.
- Print Out Sample Exams From Our Website
(focus on problems 1-4 Exam.1 F01; problems
1,3,\&4 Exam 2 F01; problem 1-6 Exam 1 S00; problems 1,3, \& 4 Exam 2 S00.
- Answers to Standardized Test p. 85 C,B,A,A,C,C,D,B,D; 14.4m/s ${ }^{2}$

Objectives:

- Vectors Addition
- Forces
- Newton's Laws

A 07-14-09

$$
\begin{aligned}
d_{\text {reaction }} & =\left(90 \frac{\mathrm{~km}}{\mathrm{hr}}\right)\left(\frac{1000 \mathrm{~m}}{\mathrm{~km}}\right)\left(\frac{(\mathrm{hr}}{3600 \mathrm{~s}}\right)(.75 \mathrm{~s}) \\
& =18.75 \mathrm{~m}=18.8 \mathrm{~m}
\end{aligned}
$$

Car must go from $25.0 \mathrm{~m} / \mathrm{m}_{0}$
zero in 21.2 m with acc.

$$
-10.0 \mathrm{~m} / \mathrm{s}^{2}
$$

How fast will can be traveling in 21.2 m ?

$$
\begin{aligned}
V_{f} & \left.=\sqrt{\left(25.0 \frac{\mathrm{~m}}{8}\right)^{2}+2(-(0.0 \mathrm{~m})} \mathrm{m}\right)(21.2 .2) \\
& =14.1 \mathrm{mms} . \text { This means }
\end{aligned}
$$

that can hits barring. It is there max inum speed te o quine to avid to david barrio. Car must travel

$$
\begin{aligned}
& \Delta x=40.0 \mathrm{~m}=v_{1}(.75 \mathrm{~s})+\Delta x_{\text {sows }} \\
& \Delta x_{\text {slowing }}=40.0 \mathrm{~m}-v_{i}(.75 \mathrm{~s})
\end{aligned}
$$

where $0.75 \mathrm{~s}=$ reaction time

$$
\Delta X=V_{2} t_{\text {recut in }}+\Delta X_{\text {slowing }}
$$

what is $\Delta X_{\text {slowing down }}$

$$
\begin{aligned}
& \Delta X_{\text {slowing }}=V_{i} t+\frac{1}{2} a t^{2} \\
& =1\left(v_{i}\right) t+\frac{1}{2}\left(-10.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2} \\
& \Delta x=\left(v_{i}\right)\left(t_{\text {reata }_{-}}+v_{i} t-5.00 t^{2}\right. \\
& V_{f}^{2}-V_{u}^{2}=2 a s x \\
& 0-v_{u}^{2}=2 a \Delta x_{\text {slowing }} \\
& V_{0}^{2}=-2 a \Delta x_{\text {slowing }} \\
& =-2 a\left(\Delta x-v_{i} t_{\text {reaction }}\right) \\
& V_{c}^{2}=-2 a \Delta x+2 a v_{c} t_{\text {reaction }} \\
& =-2\left(-10.0 \frac{\mathrm{~m}}{3^{2}}\right)\left(40.0 \mathrm{~m}^{2}\right)+2\left(-10.0 \frac{\mathrm{n}}{5}\right) y_{i} 75 \\
& V_{i}^{2}=800 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}+-15.0 \frac{\mathrm{~m}}{\mathrm{~s}} V_{i} \\
& v_{i}^{2}+15.0 \frac{\mathrm{~m}}{\mathrm{~s}}-800 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}=0 \\
& V_{i}=\frac{-15.0 \frac{m}{s} \pm \sqrt{225 \frac{\mathrm{~m}^{2}}{s^{2}}-4(-800)(1)}}{2} \\
& V_{i}=\frac{-15.0 \frac{\mathrm{~m}}{3}+\sqrt{3425 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}}{2} \\
& V_{i}=21.8 \mathrm{~m} / \mathrm{s} \\
& V_{i}=\left(21.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(\frac{1 \mathrm{~km}}{1000 \mathrm{~m}}\right)\left(\frac{3600 \mathrm{~s}}{1 \mathrm{hr}}\right)=78.5 \mathrm{~m}
\end{aligned}
$$

$$
\operatorname{lan}_{\sim}^{c a n} \rightarrow v=14 \mathrm{~m} / \mathrm{s} \quad a=0
$$

want to know when

$$
\begin{aligned}
& X_{\text {car }}=X_{\text {truck }} . \\
& X_{\text {cam }}=V_{i_{\text {_ar }}} t=(14 \mathrm{~m} / \mathrm{s}) t \\
& X_{\text {trout }}=\frac{1}{2} a_{\text {truck }} t^{2}=\frac{1}{2}\left(2.3 \frac{\mathrm{~m}}{8}\right) t^{2} \\
& \left(14 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t=\left(1.15 \frac{\mathrm{~m}}{8}\right)^{2} t^{2}
\end{aligned}
$$

divide by t

$$
\begin{aligned}
14 & =1.15 t \\
t & =\frac{14 \mathrm{~m} / \mathrm{s}}{1.15 \frac{\mathrm{~s}}{\mathrm{~s}^{2}}}=12.2 \mathrm{~s} \\
X_{\text {car }} & =\left(14 \frac{\mathrm{~s}}{\mathrm{~s}}\right)(12.2 \mathrm{~s})=170 \mathrm{~m}
\end{aligned}
$$

- A vector is 60.0 units long and directed
30.0 degrees above the x-axis. A second vector is 80.0 units long and directed 45.0 degrees below the x-axis. Determine the magnitude and direction of the resultant vector.

Make sue you define your scale. Indicate length

$$
\begin{aligned}
& A_{x}=60.0 \cos 30.0^{\circ}=52.0 \\
& A_{4}=60.0 \sin 30.0=30.0
\end{aligned}
$$

$$
\begin{aligned}
& B_{x}=80.0 \cos 45^{\circ}=56.6 \text { units } \\
& B_{y}=-80.0 \sin 45^{\circ}=-56.6 \text { units }
\end{aligned}
$$

$$
\begin{array}{c|c|c}
& x & y \\
\hline A & 52.0 & 30.0 \\
\hline B & 56.6 & -56.6 \\
\hline R & 108.6 & -26.6 \\
\hline
\end{array}
$$

$$
R=\sqrt{R_{x}^{2}+R_{y}^{2}}
$$

$$
=\sqrt{(108.6)^{2}+(-26.6)^{2}}
$$

$$
=111.0 \text { units }
$$

$$
\begin{array}{r}
\theta=\tan ^{-1} \frac{-26 \cdot 6}{108.6}=-13.5^{\circ} \\
13.8^{6} \text { below } \\
x-a x \text { is }
\end{array}
$$

Let's add the following three vectors. Sketch the vectors.
Vector A: $30.0 \mathrm{~m} / \mathrm{s}$ at 36.9° West of South
Vector B: $60.0 \mathrm{~m} / \mathrm{s}$ at 66.4^{0} North of West
Vector C: $90.0 \mathrm{~m} / \mathrm{s}$ at 45.5° East of North

1st step: find the x-component of A : \qquad
find the x-component of B : \qquad
find the x-component of C : \qquad
\qquad

2nd step: find the y-component of A \qquad
find the y-component of B \qquad
find the y-component of C : \qquad
$3^{\text {rd }}$ step:
Sum the x-components: \qquad

Sum the y-components: \qquad
$4^{\text {th }}$ step: Use Pythagorean Theorem to find magnitude of resultant

Magnitude: \qquad
$\underline{5}^{\text {th }}$ step: Calculate direction of resultant vector using

Angle: \qquad

The length of vector \mathbf{A} is 250 units and the length of vector \mathbf{B} is 350 units. If these two vectors are added together, what is the maximum possible length of their sum? Please illustrate your response with a drawing.

What is the minimum possible length of their sum? Please illustrate your response with a drawing.

