Reminders 07-08-09:

- Buy Textbook and Read Chapters 1-3
- www.hotmath.com
- Thursday I Will Answer Homework Questions
- Sign Last Page of Syllabus No Later than Thur.

Log into Webassign

- Purchase "AMPAD" paper
- Need Scientific Calculator for Exams
- Significant Figures Handout
- 1st Webassign due Thursday 11:59PM
- Answers to Standardized Test p. 29 C,C,B,A,A; 6a is $\mathrm{F} / \mathrm{m} ; \mathbf{6 b}$ is $0.001 ; \mathbf{6 c}$ is $F /(.001 \mathrm{~m})=2.7 /(0.001 * 350)$.
- Note- some of the textbook problems have answers; please use them for practice.

Objectives:

- Physical Modeling
- Problem Solving
- One Dimensional Motion

A unit of distance used in Astronomy is called the light-year, which is equivalent to the distance a beam of light travels in a year. Astronomers use this unit because of the large distances between celestial bodies. The distance in which light travels (in free space) in one second is $2.99792458 \times 10^{8} \mathrm{~m}$.

- How many meters are there in one light-year (quote the value to 4 decimal places)

$$
\begin{gathered}
\left(2.99792458 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(\frac{60 \mathrm{~s}}{\mathrm{~m}}\right)\left(\frac{60 \mathrm{~m}}{\mathrm{hr}_{r}}\left(\frac{24 h}{d}\right)\left(\frac{365_{0}}{4 \mathrm{r}}\right)\right. \\
=9.4542 \times 10^{1 \mathrm{~s}} \mathrm{~m} \\
1 \text { light -yr }=9.4542 \times 10^{15} \mathrm{~m}
\end{gathered}
$$

$$
\begin{aligned}
& V_{\text {part }}=\frac{4}{3} \pi R^{3} \begin{array}{l}
\text { Assume } \\
\text { all o. Earth } \\
\text { is oil }
\end{array} \\
& R=6.37 \times 10^{6} \mathrm{~m} \\
& V=\frac{4}{3} \pi\left(6.37 \times 10^{6} \mathrm{~m}\right)^{3}=1.10 \times 10^{2} \mathrm{~m}^{3} \\
& \left(1.10 \times 10^{22} \mathrm{~m}^{3}\right)\left(\frac{10002}{\mathrm{~m}^{3}}\right)\left(\frac{1 \mathrm{gal}}{3.7855}\right)\left(\frac{16}{42 \mathrm{gav}}\right) \\
& =6.90 \times 10^{21} \text { barrels } \\
& \text { We use } \frac{80 \times 10^{6} \frac{\text { bares }}{\text { day }}}{\text { dar }}
\end{aligned}
$$

\# days it lasts is

$$
\begin{aligned}
& \frac{6.90 \times 10^{21} \text { barrels }}{80 \times 10^{6} \text { barres day }} \\
& 8.1 .3 \times 10^{13} \text { days }
\end{aligned}
$$

Convert to years

$$
\begin{aligned}
& \left(8.63 \times 10^{13} \text { days }\right)\left(\frac{14 r}{\left.36.5 .5 d_{445}\right)}\right. \\
& 2.36 \times 10^{11} y^{r s}
\end{aligned}
$$

Assume 5\% growth in consumption

Use 70 rule
4 barrels $/ 4 \mathrm{r}$

$$
\left(80 \times 10^{6} \frac{b}{d}\right)(365.25)=2.92 \times 10^{10} \frac{b}{4}
$$

How do I double $2.92 \times 10^{10} \frac{6}{4}$
to reach $6.9 \times 10^{21} \mathrm{~b}$

$$
\begin{aligned}
& \left(2^{x}\right) \cdot 2.92 \times 10^{10}=6.9 \times 10^{21} \\
& 2^{x}=\frac{6.9 \times 10^{21}}{2.92 \times 10^{10}}=2.36 \times 10^{11}
\end{aligned}
$$

A $07-08-0$
Oil consumption has to double about 38 times.

$$
38 \cdot 14=532
$$

Round off to 50044

$$
V=\frac{4}{3} \pi\left(R_{\text {OUTER }}^{3}-R_{\text {Ina }}^{3}\right)
$$

A 07-08-09
physus.sierracollege.edu/
people|dcalabrese|calabrese.htm|
Ist exam scheduled
Tuesday 7114

$$
\Delta \vec{x}=+3-+1 m=+2 m \text { right }
$$

$$
\text { displacement } \Rightarrow \text { vector }
$$

$$
\binom{\operatorname{mag}_{\alpha}^{d}}{\text { direction }}
$$

$$
\text { mass } \Rightarrow \text { scalar }
$$

Kinematics in One Dimension

- Definitions (continued)

- Average Velocity-Displacement divided by elapsed time. The unit is m / s.
vector

$$
\vec{v}=\frac{\Delta \vec{s}}{t_{f}-t_{i}}=\frac{\Delta \vec{s}}{\Delta t}
$$

- Āverage Speed-Total distance traveled divided by elapsed time. It is not the magnitude of average velocity.
- An airplane changes its position by 4250 km toward the east in 5.0 hours.
- What is the airplane's displacement?
- What is its total distance traveled?
- What is the average velocity of the airplane?
- What is the average speed of the airplane?
- How far have you traveled after 2.0 hrs ?
displacement is 4250 km east
total distance traveled is at least 4250 km

$$
\begin{aligned}
& \vec{V}_{\text {avs }}=\frac{\Delta \vec{X}}{\Delta t}=\frac{4250 \mathrm{Km}}{5 \mathrm{hr}}=850 \frac{\mathrm{~km}}{\mathrm{hr}} \operatorname{cost} \\
& \text { average speed is at least } \\
& \frac{850 \frac{\mathrm{~km}}{\mathrm{hr}}}{} \\
& \text { solve far } \overrightarrow{\Delta x} \\
& \Delta \vec{X}= \\
& =\vec{V}_{\text {ans }} \Delta t=\left(850 \frac{\mathrm{~km}}{\mathrm{hr}}\right)(2 \mathrm{hr}) \\
& \\
&
\end{aligned}
$$

$$
\text { maynitivde of } \overrightarrow{s x} \cdot|\Delta \vec{x}|
$$

\ldots
directly propational

$$
\begin{aligned}
& y=m x \\
& \vec{V}_{\text {ains }}=\frac{\Delta \vec{x}}{\Delta t} \\
& \Delta \vec{x}=\vec{V}_{\text {ors }} \Delta t
\end{aligned}
$$

Kinematics in One Dimension

- Instantaneous Velocity-tells you how fast and in what direction an object is traveling at any instant in time. This means that we must apply the average velocity equation in a time interval becomes infinitesimally small.

