Reminders 04-23-08:

- -Exam 3 Average 65.0%
- -Exam 4 Monday May 5
- -Final Exam Wednesday May 7

Outline:

- -Line Spectra and the Bohr Model of Atom
- -Franck-Hertz Experiment
- -DeBroglie Waves

• What should the energy of photons be be so that the maximum change in wavelength due to Compton scattering by electrons is 1%?

- Using these photons, what is $\Delta\lambda$ in angstroms for Compton scattered photons at 60°?
- What is the energy of the recoil electrons in this case?

$$\frac{5}{5} = \frac{1}{1000} = .0243R (1-\cos\theta)$$

$$\frac{1}{1000} = .0243 (1-\cos\theta)$$

$$P_{e} = P_{1}r + P_{2}r$$

$$P_{e} = P_{1}r + P_{2}r - 2P_{1}P_{2}cos\theta$$

$$P_{e} = (P_{1}r + P_{2}r) = (\frac{h}{2} + \frac{h}{2})$$

$$If \lambda_{1} = 4.86 \%$$

$$\lambda_{2} = 4.86 \%$$

$$\lambda_{3} = 4.81 \%$$

$$P_{e} = 1.86 \% P_{3} = \frac{1.86 \% P_{3}}{2(9.11 \% P_{3})} = \frac{1}{1648}$$

$$= 6.39 = V$$

$$h = 6.626 \times 10^{-34} = 4.14 \times 10^{-15} \text{ eV-s}$$

$$T = \frac{6.626 \times 10^{-34}}{1.6 \times 10^{-19}} = 4.14 \times 10^{-15} \text{ eV-s}$$

$$T = \frac{1.6 \times 10^{-19}}{1.6 \times 10^{-19}} = 1240$$

$$T = \frac{1.400}{1.6 \times 10^{-19}} = 1240$$

E = K + U =	_	1	١
$\mathbf{L} - \mathbf{K} + \mathbf{U} - \mathbf{I}$		L	J

$$\Sigma F = ma \rightarrow \underline{\hspace{1cm}} = \underline{\hspace{1cm}} (2)$$

Use (2) to get K = _____

Use that result substitute into (1) to get

$$\mathbf{E} = \underline{\hspace{1cm}} (3)$$

Solve (2) for $v^2 =$ _____

Solve the quantized L for $v^2 = \underline{\hspace{1cm}}$

Equate and solve for $r_n = \underline{}$