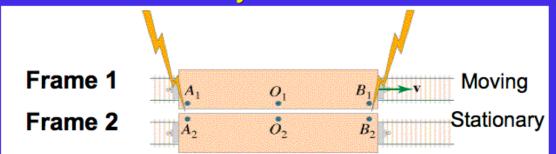
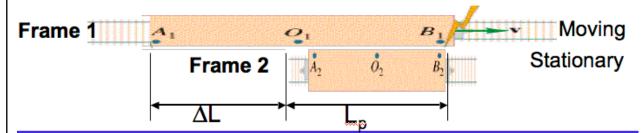
## **Reminders 4-29-08:**

- -Watch Your Books for the Next Two Weeks
- -Robert Barchfeld 3PM Wednesday S-105
- -Exam 4 Average 72%
- -Read Chapter 26


## **Objectives:**

- -Introduction to Relativity
- -Time Dilation, Length Contraction
- -Simultaneity and Synchronization
- -Relativistic Dynamics

Start with 10 muons at 4000 m T= 2ms J.f N= ,998C t = (9000 m = 30 ms N=109e 30 2m - 108e 5= 30 But ix st = 2 ms what is it in stationary frame? I neame The half like of muon to be 30 us N=108 e30ms : 108 e7 = 3.7x108


## Relativity

Simultaneity-Assume O<sub>2</sub> observes lightning strikes on both the moving vehicle and the stationary vehicle.



In frame 2, lightning strikes occur at same time to  $O_2$ . But according to  $O_2$ ,  $O_1$  sees event at front of car first, because in the time it takes the light to reach  $O_2$  the car has traveled  $v\Delta t$ . Thus  $O_2$  concludes events are not simultaneous in  $O_1$  frame.

According to Frame 1, the length of train is  $L'_{T1}=\gamma L_o$  where  $L_o$  the is the distance between strikes observed by stationary (it also corresponds to length of train as seen by  $O_2$ . The length of the stationary vehicle as seen in Frame 1 is  $L_p=L_o/\gamma$ .



According to Frame 1, lightning strikes the back of the train when  $A_1$  and  $A_2$  coincide. This happens in a time  $\Delta t_1 = \Delta L/v = [\gamma L_0 - L_0/\gamma]/v \approx v\gamma L_0/c^2$  after it strikes  $B_1$ . Frame 2 say this happens in a time  $\Delta t_2 = vL_0/c^2$ .

 Astronauts in a spaceship traveling at v=0.6c past the Earth sign off from space control saying that they are going to take a nap for one hour and call back. How long does their nap last as measured on Earth? (Ans: 1.25 hrs)

 How fast must a meterstick travel to measure the same length as a yardstick? (Ans: v=0.406c)

$$5t = 5t' \gamma = 1 - 1 - 1 - 1 = 1.35$$

$$36m = 39.3 \times 7 = 39.3 \times 36$$

$$\frac{1}{1 - \frac{1}{2}} = (39.3) \times 1 - \frac{1}{36} = (36.3) \times 1 - \frac{1}{2} = (36$$

In a typical nuclear fusion reaction, a tritium nucleus ( ${}^{3}_{1}$ H;m=2808.94MeV/c<sup>2</sup>) and deuterium ( ${}^{2}_{1}$ H) fuse together to form a helium nucleus ( ${}^{4}$ He; m=3727.41MeV/c<sup>2</sup>) plus a neutron. How much energy is released in a fusion reaction?

- A proton and an antiproton at rest annihilate according to the reaction  $p^+ + \overline{p} \rightarrow \gamma + \gamma$
- Why must the energy of the emitted photons be equal? Calculate the energy of each photon.

- A electron and a positron at annihilate according to the reaction e<sup>+</sup> + e<sup>+</sup> → γ + γ
- If the head-on collision produced two 2.0Mev photons, what are the kinetic energies of the two particles before the collision?