Reminders 4-08-08:

-Conceptual Questions on Color Due in Lab this Week.
-Conceptual Questions on Geometrical Optics due Tuesday. -Read Chapter 23
-Lens Lab Has Been Changed

Objectives:

-Mirrors and Image Formation by Reflection
-Lenses Mirrors Formation by Refraction -Ray Tracing

Law of Reflection

A ray of light strikes a plane mirror at an angle θ. If the mirror is rotated by α, while the indent ray is kept fixed, the angle reflected ray rotates by 2α relative to the incident ray. Prove this.
$\theta_{\mathrm{i} 2}=\theta_{\mathrm{i} 1}+\alpha$
$\theta_{\mathrm{r} 2}=\theta_{\mathrm{r} 1}+\alpha$
Angle between incident ray and reflected
ray before mirror is rotated is is $\theta_{r 1}+\boldsymbol{\theta}_{\mathbf{i} 1}$ When the mirror is rotated the angle between the incident ray and the reflected ray is

$$
\theta_{\mathrm{r} 2}+\theta_{\mathrm{i} 2}=\left(\theta_{\mathrm{r} 1}+\alpha\right)+\left(\theta_{\mathrm{i} 1}+\alpha\right)=\left(\theta_{\mathrm{r} 1}+\theta_{\mathrm{i} 1}+2 \alpha\right)
$$

What is the minimum mirror height that is required to see an image of you in a mirror?

$\mathrm{EM}=\mathrm{MF}=0.5 \mathrm{EF} \quad \mathrm{EM}=\mathrm{CB}$
$\mathrm{CB}+0.5 \mathrm{DC}=0.5 \mathrm{HF}$

