ABSOLUTE PHOTO-DOUBLE DETACHMENT CROSS-SECTION MEASUREMENTS FOR F⁻ AND Cl⁻

A. Aguilar^{1,2}, J.S. Thompson¹, D. Calabrese³, A. M. Covington⁴, C. Cisneros⁵, V.T. Davis⁶, M.S. Gulley⁷, M. Halka⁸, D. Hanstorp⁹, J. Sandström⁹, B. McLaughlin¹⁰ and D.J. Pegg¹¹

¹Department of Physics, University of Nevada, Reno, NV 89557-0058, U.S.A.

²Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.

³Department of Physics, Sierra College, Rocklin, CA 95677, U.S.A.

⁴Lake Tahoe Community College, Tahoe City, CA 96150-4524, U.S.A.

⁵Centro de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca 62131, México

⁶Photonics Research Center, United States Military Academy, West Point, NY 10996, U.S.A.

⁷Physics Division, Los Alamos National Laboratory, NM 87545, U.S.A.

⁸Department of Physics, Embry-Riddle Aeronautical University, Prescott, AZ 86301, U.S.A.

⁹Department of Physics, Chalmers University of Technology and Göteborg University, SE-41296, Göteborg, Sweden.

¹⁰School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, U.K.

¹¹Department of Physics, University of Tennessee, Knoxville, TN 37996, U.S.A.

Loosely bound systems such as negative ions are particularly well suited to study the effects of electron correlation on atomic structure and dynamics. Photo-double detachment is a highly correlated process in which two electrons are simultaneously ejected from a negative ion following the absorption of a single photon. There have been several previous investigations of photodouble detachment. Most of these studies have focused on threshold behavior or resonance structure. Only a few experiments included absolute measurements of the cross section. The first measurement of a cross section over an extended energy range was recently made for Li^- [1].

Absolute measurements of the total cross section for photo-double detachment of the halogen negative ions, F^- and Cl^- have been obtained from 20-60 eV and 18-42 eV respectively. The experiments were performed using the ion-photonbeam (IPB) endstation [2] installed on undulator beamline 10.0.1 at the Advanced Light Source.

Figure 1 shows the data accumulated for the F^- ion in the double detachment continuum, extending from the threshold at the F^+ ($2p^4 \ ^3P$) limit to the F^{2+} ($2p^3 \ ^4S^o$) limit. A corresponding energy range was covered in the Cl⁻ measurements. Since the detection of the F^+ and Cl⁺ ions was not state selective, these measurements represent the sum of the partial cross sections for detachment into the different continua associated with the ground and excited states of the F^+ and Cl^+ ions. A careful search was made for resonance structure in the cross section using high energy resolution and small energy steps. No resonances were apparent in either the F^- or the Cl^- cross section.

Fig. 1. Measurements of the total cross section for photo-double detachment of F^- . The red squares indicate absolute measurements made at selected photon energies.

References

- H. Kjeldsen et al. J. Phys. B 34, L353 (2001).
- [2] A. M. Covington et al. Phys. Rev. A 66, 062710 (2002).