## Problems of the Week 2

## Always show your all work to receive credit (NO WORK=NO CREDIT)

1. A tube of negligible volume connects two evacuated bulbs of equal volume. One bulb is placed in a 200 K constant temperature bath and the other in a 300 K bath, and 1.00 g of an ideal gas is injected into the system. Calculate the final number of grams of the ideal gas in the bulb that is in the 200K bath (1 point).
A. 0.33 g
B. 0.40 g
C. 0.60 g
D. $Q=0.67 \mathrm{~g}$
E. 0.80 g
2. The coefficient of volume expansion (i.e. the fractional change in volume per unit temperature change) of an ideal gas is equal is $\beta=\frac{1}{T}$, where T is the temperature of the gas in Kelvin is easily derived from the expression for the coefficient of volume expression $\beta=\frac{1}{V}\left(\frac{d V}{d T}\right)_{P}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)$.
If the ratio of the number of moles to volume of gas, $n / V$ is sufficiently high, the interaction between molecules of the gas has a measurable effect on the properties of the gas. A better model of the gas is the van der Waals model $\left(p+a \frac{n^{2}}{V^{2}}\right)(V-n b)=n R T$ where $\mathbf{a}$ and $\mathbf{b}$ are empirical constants for different gases. Constant $b$ is a correction for the finite size of the molecule. Its value is the volume of one mole of the gas. The term $\mathrm{a} / \mathrm{V}^{2}$ arises from the intermolecular force within the gas. For example the constants $\mathbf{a}$ and $\mathbf{b}$ for $\mathrm{O}_{2}$ are 0.138J$\mathrm{m}^{3} / \mathrm{mol}^{2}$ and $31.8 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}$, respectively. Use the van der Waals model to calculate $\beta$, for 2.0 moles of $\mathrm{O}_{2}$ in a 1.00 L container at 300 K (2 points).
A. $\quad 1.50 \times 10^{-3} / \mathrm{K}$
B. $3.87 \times 10^{-3} / \mathrm{K}$
C. $5.37 \times 10^{-3} / \mathrm{K}$
D. $45.6 \times 10^{-3} / \mathrm{K}$
E. $124.5 \times 10^{-3} / \mathrm{K}$
