Problems of the Week 12

Always show your work to receive credit (NO WORK=NO CREDIT)

Always show your work to receive credit

1. A particle of mass m is subject to an attractive force $F=-c / r^{2}(U=-c / r)$ where c is a constant. The particle is in a closed orbit. Its velocity at one of its extreme positions a distance b from the center of force is $(\mathrm{c} / 2 \mathrm{mb})^{1 / 2}$. What is its velocity at the other extreme position?
a. 0
b. $3(\mathrm{c} / 2 \mathrm{mb})^{1 / 2}$
c. $5 \mathrm{c} / 4 \mathrm{mb}$
c. $2 \mathrm{c} / \mathrm{mb}$
e. $(2 \mathrm{c} / \mathrm{mb})^{1 / 2}$
2. Two planets in a different solar system orbit each other similar to the Earth-Moon system. One planet is of mass $M_{1}=4 M$ and radius R_{1}. The other planet is of mass $M_{2}=M$. You want to launch a vehicle so that it travels from M_{1} to M_{2}. What is the minimum initial speed required to accomplish this feat? Assume the distance between the planets is d, and $R_{1}=d / 10.0$. Ignore any affects due to other planets.
a. $8.01\left(\frac{G M}{d}\right)^{\frac{1}{2}}$
b. $\quad 9.17\left(\frac{G M}{d}\right)^{\frac{1}{2}}$
c. $\quad 10.5\left(\frac{G M}{d}\right)^{\frac{1}{2}}$
d. $\quad 14.4\left(\frac{G M}{d}\right)^{\frac{1}{2}}$
e. $16.3\left(\frac{G M}{d}\right)^{\frac{1}{2}}$
3. A 2.0 m long uniform rod of mass 1.0 kg lies along the x -axis. Calculate the gravitational field strength at the point P on the y-axis.
a. G
b. .71G
c. 0.50 G
c. 0.25 G
d. 0.17 G
e. 0.11 G

