Problems of the Week 4

Always show your work to receive credit (NO WORK=NO CREDIT)

1. A battery is connected to a parallel-plate capacitor of area A and plate separation $\mathrm{d}=5.0 \mathrm{~cm}$. Once the plates are fully charged, the battery is removed. While maintaining a charge q on the plates, a slab of copper of thickness $b=1.0 \mathrm{~cm}$ is inserted halfway between the parallel plate capacitor. How much work is done on the conductor as it is inserted into the capacitor?
A. $\boldsymbol{W}=-\frac{2.5 \boldsymbol{q}^{2}}{\varepsilon_{\boldsymbol{o}} \boldsymbol{A}}$
B. $\boldsymbol{W}=\frac{\boldsymbol{q}^{2}}{2 \varepsilon_{\boldsymbol{o}} \boldsymbol{A}}$
C. $W=-\frac{q^{2}}{\varepsilon_{o} A}$

D. $\boldsymbol{W}=\frac{.025 q^{2}}{\varepsilon_{\boldsymbol{o}} \boldsymbol{A}}$
E. $\boldsymbol{W}=-\frac{0.005 \boldsymbol{q}^{2}}{\varepsilon_{\boldsymbol{o}} A}$

Note -the numerical constants in the above choices have dimensions of length.
2. Given that the plate dimensions are 0.50 mx 0.50 m , what is the force on the conductor after a length $x=0.25 \mathrm{~m}$ has been inserted into the capacitor? Assume the charge on the plates remains constant (2pts).
A. $\frac{0.040 \boldsymbol{q}^{2}}{\varepsilon_{o}}$
B. $\frac{0.12 q^{2}}{\varepsilon_{o}}$

C. $\frac{0.25 q^{2}}{\varepsilon_{o}}$
D. $\frac{0.75 q^{2}}{\varepsilon_{o}}$
E. $\frac{1.5 q^{2}}{\varepsilon_{o}}$

Note-the numerical constants in the above choices have dimensions of $1 /(\text { length })^{2}$.

