Problems of the Week 2

Always show your work to receive credit (NO WORK=NO CREDIT)

1. An insulating sphere of radius R has a cavity of radius R/2 as shown below. Assuming the sphere has uniform charge density ρ , calculate the electric field strength at points A and B.

A.
$$E_A = \frac{Q}{4\pi\varepsilon_o R^2}$$
; $E_B = 0$

B.
$$E_A = \frac{Q}{8\pi\varepsilon_a R^2}$$
; $E_B = 0$

C.
$$E_A = \frac{17Q}{72\pi\varepsilon_o R^2}$$
; $E_B = \frac{Q}{8\pi\varepsilon_o R^2}$

D.
$$E_A = \frac{11Q}{36\pi\varepsilon_o R^2}$$
; $E_B = \frac{Q}{12\pi\varepsilon_o R^2}$

E.
$$E_A = \frac{4Q}{9\pi\varepsilon_o R^2}$$
; $E_B = \frac{Q}{8\pi\varepsilon_o R^2}$

Note
$$Q = \rho \frac{4}{3} \pi \mathbf{R}^3$$

2. Calculate the magnitude and direction of the electric field at point C.

A.
$$E_C = 0.089 \frac{Q}{\pi \epsilon_{\perp} R^2}$$
; $\theta = 285^{\circ}$

B.
$$E_C = 0.147 \frac{Q}{\pi \varepsilon_o R^2}$$
; $\theta = 324^\circ$

C.
$$E_C = 0.187 \frac{Q}{\pi \varepsilon_o R^2}$$
; $\theta = 352^\circ$

D.
$$E_C = 0.228 \frac{Q}{\pi \varepsilon_o R^2}$$
; $\theta = 357^\circ$

E.
$$E_C = 0.316 \frac{Q}{\pi \epsilon_o R^2}$$
; $\theta = 340^\circ$