Problems of the Week 2

Always show your work to receive credit (NO WORK=NO CREDIT)

1. An insulating sphere of radius R has a cavity of radius $R / 2$ as shown below. Assuming the sphere has uniform charge density ρ, calculate the electric field strength at points A and B.
A. $\quad \boldsymbol{E}_{\boldsymbol{A}}=\frac{\boldsymbol{Q}}{4 \pi \varepsilon_{0} \boldsymbol{R}^{2}} ; \boldsymbol{E}_{\boldsymbol{B}}=0$
B. $\quad \boldsymbol{E}_{\boldsymbol{A}}=\frac{\boldsymbol{Q}}{8 \pi \varepsilon_{\boldsymbol{o}} \boldsymbol{R}^{2}} ; \boldsymbol{E}_{\boldsymbol{B}}=0$
C. $\boldsymbol{E}_{A}=\frac{17 \boldsymbol{Q}}{72 \pi \varepsilon_{o} R^{2}} ; \boldsymbol{E}_{B}=\frac{\boldsymbol{Q}}{8 \pi \varepsilon_{o} R^{2}}$
D. $\quad \boldsymbol{E}_{A}=\frac{11 Q}{36 \pi \varepsilon_{o} R^{2}} ; \boldsymbol{E}_{B}=\frac{\boldsymbol{Q}}{12 \pi \varepsilon_{o} R^{2}}$
E. $\quad \boldsymbol{E}_{A}=\frac{4 \boldsymbol{Q}}{9 \pi \varepsilon_{0} R^{2}} ; E_{B}=\frac{\boldsymbol{Q}}{8 \pi \varepsilon_{o} R^{2}}$

Note $\boldsymbol{Q}=\rho \frac{4}{3} \pi \boldsymbol{R}^{3}$
2. Calculate the magnitude and direction of the electric field at point C.
A. $E_{C}=0.089 \frac{Q}{\pi \varepsilon_{0} R^{2}} ; \theta=285^{\circ}$
B. $E_{C}=0.147 \frac{Q}{\pi \varepsilon_{0} R^{2}} ; \theta=324^{\circ}$
C. $E_{C}=0.187 \frac{Q}{\pi \varepsilon_{0} R^{2}} ; \theta=352^{\circ}$
D. $E_{C}=0.228 \frac{Q}{\pi \varepsilon_{0} R^{2}} ; \theta=357^{\circ}$
E. $\quad E_{C}=0.316 \frac{Q}{\pi \varepsilon_{0} R^{2}} ; \theta=340^{\circ}$

