Problems of the Week 8

Always show your work to receive credit (NO WORK=NO CREDIT)

1. A long wire carrying current $\mathrm{I}=5.0 \mathrm{~A}$ is parallel to the y -axis at a distance $\mathrm{L}=0.15 \mathrm{~m}$ above the xy plane. In the xy-plane there is a square loop of wire of 150 turns and side L with two of its sides parallel to the long wire. The loop of wire is moving in the positive x-direction with constant speed $\mathrm{v}=20.0 \mathrm{~m} / \mathrm{s}$. Assuming the resistance of the square loop is 0.250Ω, calculate the induced current in the loop when its center crosses the y-axis. Hint 1: The fundamental theorem for the integral of a derivative might come in handy.
A. 9.6 mA
B. 24.0 mA
C. 32.0 mA
D. 48.0 mA
E. 54.0 mA

Hint 2: Another Method-Consider a charge in the loop. Since $\vec{F}=q \vec{v} \times \vec{B}$, the work done each the charge around the loop is $\vec{F}=\oint(q \vec{v} \times \vec{B}) \bullet d \vec{s}$. But $W / q=\Delta V$, so $\Delta V=\oint(\vec{v} \times \vec{B}) \bullet d \vec{s}$.

Hint 3: Another Method-Notice that the change in flux for the area of the loop lying in the region $0 \leq x \leq L / 2$ is the same as the change in flux for part of the loop lying in the region $L / 2 \leq x \leq 0$, since the z-component of the magnetic field for $x<0$ is opposite to that for $x>0$. Moreover, since B changes direction from $x<0$ to $x>0$ you must break up the expression for the flux into two integrals.
2. A common method to heat conductors is to place them in a time varying B-field. The changing flux produces eddy currents that heat the conductor. This technique is called induction heating. This method allows one to boil a pot of water, heat treat metals (at high frequencies) or melt large amounts of metals without contaminating them with combustion gases. Furthermore, it is possible to heat conductors in a vacuum. Consider a thin 1.0 m long graphite tube of resistivity $\rho=3.5 \times 10^{-5}$ ohm-meter having a radius of 6.00 cm and thickness $\mathrm{t}=50.0 \mu \mathrm{~m}$ that is placed inside a long solenoid having $\mathrm{N}=5000$ turns per meter. The current in the solenoid is $\mathrm{I}=25.0 \cos (377 \mathrm{t}) \mathrm{A}(60 \mathrm{~Hz}$ AC current). Calculate the average power dissipated in the tube. Note-the current flows along the circumference of the tube not its length! Assume the tube is sufficiently thin that the current in the conductor is independent of r within the wall of the tube.
A. 236 mW
B. 527 mW
C. 849 mW
D. 1530 mW
E. 2270 mW

If this were a solid cylinder the current would vary with r. Thus we would need to write the proper expression for the average power as a function of r. This would involve an integral.

